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Abstract
The transferable force constant model of van de Walle et al (2002 Rev. Mod. Phys. 74 11) has
been combined with the itinerant coherent potential approximation to calculate the complete
phonon spectra and elastic constants in the magnetic type-II alloy Pdx Fe1−x across the
concentration range. The calculated dispersion curves and elastic constants agree very well with
the experiments. We discuss the results in the light of the behavior of inter-atomic force
constants between various pairs of chemical species. The results demonstrate that the
combination of the transferable force constant model and the ICPA method for configuration
averaging serve as an efficient and reliable first-principles-based tool to compute the phonon
spectra for disordered alloys at any arbitrary concentration.

1. Introduction

The study of lattice vibrations in the presence of substitutional
disorder is one of the most fascinating areas of condensed
matter physics. A wide variety of physical properties of
solids [1] depend on their lattice-dynamical behavior which
makes the investigation of the governing physics of these
systems intriguing. The technological importance of these
alloys, on the other hand, has added an extra dimension and
provided the necessary momentum towards the research and
analysis of these systems. As far as experimental realization
is concerned, a huge array of data is available [2–9] at both
stoichiometric and off-stoichiometric compositions, exploring
the effect of lattice dynamics on various material properties
of the system. The theoretical study, on the other hand, has
got the necessary boost only recently with the advent of the
‘itinerant coherent potential approximation’ (ICPA) [10] and
the state-of-the-art first-principles density functional theory
(DFT) [11, 12]-based ‘density functional perturbation theory’
(DFPT) [13]. Based upon the augmented space formalism [14],
the ICPA is a mean-field-based cluster generalization of the
single-site coherent potential approximation (CPA) [15]. In
combination with DFPT, this ICPA method has been tested
on a number of systems [16–18] and is found to produce
satisfactory results on most occasions. However, as mentioned
in the original formalism, the ICPA is heavily dependent
upon the accuracy of the inter-atomic force constants. Due

to the random chemical environment around each atom
in a substitutionally disordered alloy, the force constants
corresponding to A–A, B–B and A–B pairs in an Ax B1−x

alloy are different from those in the ordered alloy and
in no way resemble the force constants in a completely
ordered environment. In order to have significant accuracy
in calculated phonon properties one should, therefore, have
accurate information on force constants corresponding to
various pairs of chemical species. The quest, thus, is to
look for a reliable source of inter-atomic force constants in
random alloys. The most trustworthy source available in this
regard are the first-principles electronic structure methods.
However, state-of-the-art ab initio calculations always assume
some degree of translational symmetry in disordered systems.
For calculations of properties in disordered alloys through
first-principles techniques, one has to construct either a large
supercell or, as is done in conventional alloy theory, a cluster
expansion [19] has to be fitted to the ground state energies of
a large number of ordered states. While the calculation for a
given ordered structure is a relatively routine task with modern
first-principles electronic structure codes, this procedure has
to be repeated for many configurations in order to properly
fit a cluster expansion, which makes the whole procedure
computationally demanding. Similar is the case for the
supercell technique. For calculation of phonon excitations,
the computational cost rises even further. Thus, in spite
of having a suitable self-consistent analytical technique to
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perform the required averaging over various configurations
in the disordered systems, the calculations of the phonon
spectrum in random alloys were rather limited because of these
practical difficulties.

Recently, a new idea has been proposed to alleviate
the problem of heavy computational cost. In ab initio
calculations, most of the computational burden comes from
the calculation of the force constant tensors. It would
thus be extremely helpful if the force constants determined
in one structure could be used to predict force constants
in another structure. However, it was observed that the
force constants obtained from one structure are not directly
transferable to another structure [20, 21]. Nevertheless, a
simple modification of the transferable force constant approach
yields substantial improvements in precision. Initially defined
for the transferability of force constants for a particular pair
type [20], van de Walle and Ceder have recently introduced
the idea of using bond-length-dependent transferable force
constants [22–24]. Their calculations on a number of
systems [21–24] had revealed that most of the variation
in the stiffness of a given chemical bond across different
structures can be explained by changes in bond length alone,
which suggests that the force constant versus bond length
relationships exhibit better transferability than force constants
themselves. This approach provides a very simplistic and
computationally feasible way to determine the force constants,
as the force constant versus bond length relationships can
be determined from a relatively small number of first-
principles calculations on select configurations and then can
be transferred to determine the force constants for other atomic
configurations, once the relevant bond lengths are known.

In all the calculations with this ‘bond stiffness versus
bond length’ approach the focus has been on calculations
of vibrational entropy contributions in the context of relative
stability of various ordered and disordered phases. The
complete phonon spectra and related material properties,
like the elastic constants, were never calculated using this
approach. The reliability of the transferable force constant
model (TFC) cannot be completely satisfactory unless one
computes the complete phonon spectra. This is because
of the fact that, in cases of the calculation of vibrational
entropies or their differences, the key quantity is the vibrational
densities of states, an integrated quantity which therefore
may average out errors through the integration process. The
phonon frequencies, on the other hand, would reflect the
errors due to the approximation in a proper way. Another
noteworthy point is that the TFC model has never been applied
to magnetic alloys. It is a well-known fact that, for type-II
alloys like FePt and FePd, where the constituents, in spite of
crystallizing in different structures in their respective ground
states, form a single solid solution upon alloying. These alloys
at compositions near the invar region exhibit an interplay of
magnetism and lattice dynamics [25, 26]. The computation
and understanding of phonon spectra in these alloys is, thus,
necessary to understand the microscopic nature of magnetism–
phonon interaction in these technologically important systems.

In this paper, we compute the phonon spectra and
elastic constants for the magnetic type-II alloy Pdx Fe1−x with

x = 0.96, 0.9, 0.5 and 0.28. The reasons for choosing these
alloys are threefold:

(i) to check the validity of the TFC model in the context of a
magnetic type-II alloy,

(ii) to check whether the combination of the TFC model
for extraction of accurate force constants in a random
alloy and the ICPA method to perform the configuration
averaging can improve upon the earlier attempts where the
force constants were extracted empirically [17, 18] or from
model inter-atomic potentials [27, 28] and thus,

(iii) validate the combination of the TFC model and the ICPA
as a reliable first-principles-based method for calculating
the phonon spectra and related properties for disordered
alloys which takes care of the microscopic aspects of
various types of disorder.

We organize this paper as follows. Methodology and
calculational details are presented briefly in section 2. We
skip the details of the ICPA and the DFPT methodologies
which are discussed earlier in the literature. Section 3 contains
results and thorough discussions including experimental results
as well as results obtained from our previous work on this
alloy. Concluding remarks and future directions are presented
in section 4.

2. Methodology and computational details

In the TFC approach, three assumptions are made to obtain
the desired transferable properties. Only the nearest-neighbor
interactions are considered because the longer-ranged force
constants are ill-suited for the purpose. However, no serious
error is expected to occur due to this because of the fact that, in
the alloys considered, the distant-neighbor force constants are
orders of magnitude smaller than the nearest-neighbor ones.
The bending stiffnesses b are averaged over various spatial
directions in order to obtain the effective isotropic bending
stiffness and the off-diagonal terms in the force constant tensor
Φ are constrained to be zero. Thus, the resulting force constant
tensor has only two independent terms, the stretching stiffness
s and the isotropic bending stiffness b:

�(i, j) =
⎛
⎝

b 0 0
0 b 0
0 0 s

⎞
⎠ .

Here the coordinate system is transformed such that the z axis
is aligned along the direction connecting atoms i and j . This
symmetrization ensures that the force constants never have a
symmetry which is lower than the environment into which it is
transferred. The dependence of s and b on the bond length
l are transferable between different chemical environments.
This dependence can be easily determined first by calculating
the elements of the stretching–bending force constant tensor
for a set of ordered structures so that enough dispersions of
different bond distances are obtained and then by fitting these
elements to an analytic function. To this end, we perform a
set of calculations with different ordered structures at different
compositions of FePd, each at different bond lengths. Taking
our cue from van de Walle and Cedar [29], the force constant
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Figure 1. Nearest-neighbor stretching and bending force constants
for Pdx Fe1−x as a function of bond length. The solid lines are the
fitted functions whereas the circles correspond to data obtained from
ab initio calculations on a set of structures (L12 at four different
volumes, L10 at two different volumes, and fcc Fe and fcc Pd at three
different volumes).

versus bond distance data for each pair of chemical bonds is
fitted using a linear relationship:

s(l) = s0 + s1(l − l0) (1)

b(l) = b0 + b1(l − l0) (2)

where l0 is the equilibrium length of a particular bond and
s0, b0 are the corresponding stiffness parameters. Once this
is done, the inter-atomic force constants of any other structure
can be determined solely from the knowledge of its equilibrium
geometry.

First-principles Quantum-Espresso code [30], based upon
a plane wave pseudopotential implementation of the DFPT,
has been used to compute the Fe–Fe, Fe–Pd and Pd–Pd
force constants at different bond lengths with different ordered
structures. Force constants for L12 Fe3Pd and FePd3, L10

FePd and fcc Fe and fcc Pd structures at their respective
equilibrium and experimental lattice parameters have been
used for construction of the transferable relation. Ultrasoft
pseudopotentials [31] with nonlinear core corrections [32]
were used. Perdew–Zunger parameterization of the local
density approximation [33] were used for the exchange–
correlation part of the potential. Plane waves with energies up
to 55 Ryd are used in order to describe electron wavefunctions
and Fourier components of the augmented charge density with
cutoff energy up to 650 Ryd are taken into account. The
Brillouin-zone integrations are carried out with Methfessel–
Paxton smearing [34] using a 12 × 12 × 12 k-point mesh. The
value of the smearing parameter is 0.02 Ryd. These parameters
are found to yield phonon frequencies converged to within 5%.

After achieving the desired level of convergence for
the electronic structure, the force constants are conveniently
computed in reciprocal space on a finite q-point grid and

0 1
0

1

2

3

4

5

ω
 (Η

Ζ)

0
ζ

0 0.5

[ζ00] [ζζ0] [ζζζ]

L

T

L

T

L

T

T

1

2

x10
13

Figure 2. Dispersion curves (frequency ω versus reduced wavevector
ζ ): ζ = |�q|

|�qmax| , �q the phonon wavevector; for Pd0.96Fe0.04 calculated in
the ICPA (solid lines) with the force constants obtained at the alloy
bond length (5.189 au) using ‘bond stiffness versus bond length’
method. The circles are the experimental data.

Fourier transformation is employed to obtain the real-space
force constants. The number of unique real-spaced force
constants and their accuracy depend upon the density of the
q-point grids: the closer the q-points are spaced, the more
accurate the force constants are. In this work, we have used
a 4 × 4 × 4 q-point mesh.

The required configuration averaging is performed by
employing the ICPA method. The disorder in the force
constants were considered for the nearest-neighboring shell
only and the calculations were done on 400 energy points.
A small imaginary frequency part of −0.05 was used in the
Green’s functions. The Brillouin-zone integration was done
over 356 q-points in the irreducible Brillouin zone. The
simplest linear-mixing scheme was used to accelerate the
convergence. The number of iterations ranged from 5 to 15 for
all the calculations. The phonon frequencies are obtained from
the peaks of the coherent scattering structure factor defined as

〈〈Sλ(�q, w)〉〉coh =
∑
ss′

dsds′
1

π
Im〈〈Gss′

λ (�q, w2)〉〉 (3)

where λ is the normal-mode branch index, ds is the coherent
scattering length for species s and 〈〈Gss′

λ (�q, w2)〉〉 is the
configuration-averaged spectral function associated with the
species pair s, s ′.

3. Results

Neutron-scattering results on phonon spectra for Pd0.96Fe0.04,
Pd0.9Fe0.1 [35], Pd0.5Fe0.5 [36] and Pd0.28Fe0.72 [26] for all
three symmetry directions are available along with the results
on elastic constants. However, the measurements were done at
different experimental conditions. While the measurements for
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Figure 3. Dispersion curves (frequency ω versus reduced wavevector
ζ ): ζ = |�q|

|�qmax | , �q the phonon wavevector; for Pd0.9Fe0.1 calculated in
the ICPA (solid lines) with the force constants obtained at the alloy
bond length (5.17 au) using ‘bond stiffness versus bond length’
method. The circles are the experimental data.

x = 0.96, 0.9 and 0.28 (x is the Pd concentration) were done at
room temperatures, the measurements for x = 0.5 were done
at 1020 K. Accordingly, we discuss our results in two separate
subsections.

3.1. Pdx Fe1−x for x = 0.96, 0.9 and 0.28

The stretching and bending force constants for the alloy at
the three concentrations are extracted from the fitted ‘bond
stiffness versus bond distance’ relations as shown in figure 1.
The curves in figure 1 show that the linear fitting is appropriate
for the present case as the monotonic decrease of the force
constants with the increasing bond distances is well captured
for all three pairs of interatomic force constants. The computed
values of correlation coefficient for the straight line fitting of
stretching components of the force constant matrices varies
between 0.83 and 0.99 which can be considered to be a very
good fit. The fitting accuracy for the bending components is,
however, a bit low with the calculated correlation coefficient
varying between 0.74 and 0.97. But still, one can safely
ignore this point as the bending components of force constant
matrices are orders of magnitude smaller than the stretching
components and therefore play minimal role in determining
the phonon frequencies. The stretching and bending force
constants for the three concentrations obtained from the fitted
results are presented in table 1. The results show that for
high Pd concentration systems, namely for x = 0.96 and 0.9,
the Fe–Fe and Fe–Pd force constants are softer by an order
of magnitude than that of the Pd–Pd ones, with the Fe–Pd
force constants being the softest. This is only to be expected
because of the following reason: in a Pd-rich alloy like the ones
discussed here, the Fe atoms would find lesser numbers of Fe
atoms in the nearest-neighbor environment compared to that of
the elemental Fe. As a result, the Fe–Fe and Fe–Pd interactions

Table 1. Computed force constants (in units of dyn cm−1) for
Pdx Fe1−x using the TFC model. Results from other
calculations [17, 18] are also presented for comparison.

Pair type
Conc.
(x)

Bond length
(au)

s
(This
work)

b
(This
work)

s
(Other
work)

b
(Other
work)

Fe–Fe 0.96 5.189 8 990 −930 13 366a −566a

Pd–Pd 0.96 5.189 45 641 −2783 45 925a −2424a

Fe–Pd 0.96 5.189 4 720 432 35 698a −1879a

Fe–Fe 0.90 5.170 10 202 −1020 14 495a −609a

Pd–Pd 0.90 5.170 49 404 −3073 48 768a −2699a

Fe–Pd 0.90 5.170 7 718 206 36 272a −1992a

Fe–Fe 0.28 5.019 20 157 −1760 — —
Pd–Pd 0.28 5.019 80 323 −5457 — —
Fe–Pd 0.28 5.019 32 345 −1655 — —
Fe–Fe 0.50 5.12 13 573 −1271 — —
Pd–Pd 0.50 5.12 59 874 −3880 — —
Fe–Pd 0.50 5.12 16 057 −424 — —
Fe–Fe 0.50 5.246 5 230 −651 15 400b −4100b

Pd–Pd 0.50 5.246 33 983 −1883 41 800b −2900b

Fe–Pd 0.50 5.07 24 136 −1035 30 600b −2500b

a Reference [18]. b Reference [17].

would be much softer compared to the Pd–Pd ones due to the
overwhelming domination of the latter pair in the environment.
In a recent paper [18], we tried to model the inter-atomic force
constants for these two systems by calculating the Pd–Pd and
Fe–Fe force constants in pure Pd and pure Fe lattices with
the alloy lattice constant. The basic assumption behind such
an approach was that the effect of environment on these force
constants is expected to be less due to the high concentration
of one of the constituents. The Fe–Pd interaction was modeled
by hand adjustment starting from the concentration-averaged
values. Although the results on the phonon spectrum had good
agreement with the experiments, these choices were purely
arbitrary and neglecting the environment effects limited its
applicability for an arbitrary concentration. On the other hand,
the TFC-based approach captures the effects of environment
and thus leads to the correct understanding of the relative
nature of interactions between different species pairs. A
comparison of the results of the present calculation and those
in [18] shows that the Pd–Pd force constants have near-perfect
agreement while the Fe–Fe force constants are slightly stiffer
in [18]. This definitely is an artifact of neglecting the role of
environment. In the case of Fe–Pd force constants, we see a
large difference. This is only to be expected, as in [18] the
force constants were obtained by adjusting from concentration-
averaged values based upon empirical observations and thus
did not have a robust physical reasoning. On the other hand,
the Fe–Pd interactions obtained by the TFC model have better
reliability and accuracy because it is based upon the physical
reality of transferability of the bond stiffness versus bond
length relationship.

In the case of Pd0.28Fe0.72, the force constants obtained
from the transferability relation as presented in table 1
show hardening of all three interatomic force constants in
comparison to Pd-rich alloys. This behavior follows the
expectation. Since the bond distances are smaller than the
Pd-rich alloys, all three bonds were expected to stiffen. The
Fe–Fe interactions harden because the Fe atoms can now find
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Figure 4. Dispersion curves (frequency ω versus reduced wavevector
ζ ): ζ = |�q|

|�qmax| , �q the phonon wavevector; for Pd0.28Fe0.72 calculated in
the ICPA (solid lines) with the force constants obtained at the alloy
bond length (5.019 au) using ‘bond stiffness versus bond length’
method. The circles are the experimental data.
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Figure 5. Dispersion curves (frequency ω versus reduced wavevector
ζ ): ζ = |�q|

|�qmax| , �q the phonon wavevector; for Pd0.50Fe0.50 calculated in
the ICPA (solid lines) with the force constants obtained at the L10

bond length at 860 K (5.25 au for Fe–Fe and Pd–Pd and 5.07 au for
Fe–Pd) using the ‘bond stiffness versus bond length’ method. The
circles are the experimental data.

more Fe atoms in the neighboring environment. The Pd–
Pd bonds stiffen because of the fact that the larger Pd atoms
find themselves in a cage of smaller Fe atoms and the Fe–Pd
interactions harden because of presence of more unlike pairs in
the nearest-neighbor environment.

In what follows, we use the transferable force constants
of table 1 as inputs to the ICPA and calculate the phonon
dispersion curves for the three alloys. The phonon dispersion

Table 2. Computed elastic constants (in units of Mbar) for
Pdx Fe1−x .

System
Elastic
constant

Theo.
(current paper)

Theo.
([18])

Expt.
([26, 35])

Pd0.96Fe0.04 C11 2.17 1.97 2.3
C12 1.62 1.25 1.53
C44 1.09 1.26 0.78

Pd0.90Fe0.10 C11 2.12 2.24 2.29
C12 1.59 1.41 1.65
C44 1.05 1.12 0.86

Pd0.28Fe0.72 C11 1.50 — 1.40 ± 0.20
C12 1.13 — 1.34 ± 0.18
C44 0.75 — 0.80 ± 0.02

curves for Pd0.96Fe0.04, Pd0.9Fe0.1 and Pd0.28Fe0.72 calculated
with these sets of force constants are presented in figures 2, 3
and 4, respectively. It can be seen that calculated and
experimental results of phonon frequencies for Pd0.96Fe0.04

and Pd0.9Fe0.1 alloys are in excellent agreement for all the
symmetry directions. The calculated phonon frequencies of the
Pd0.28Fe0.72 alloy also agree reasonably well with experimental
values except near the zone edges. This disagreement could
be because of using the LDA as the exchange–correlation
functional at the experimental lattice constant for a Fe-rich
system. Earlier calculations with pure Fe [37] had shown that
the calculated frequencies are underestimated if one uses the
LDA at the experimental lattice constant which is larger than
the LDA equilibrium lattice constant. Another noteworthy
feature in the dispersion curves for Pd0.28Fe0.72 is that, near
the zone edge, a splitting in the dispersion curves is observed
in the longitudinal branch along the [ζ, ζ, ζ ] direction. This
kind of splitting in the dispersion curves is a typical feature
of strong force constant disorder and is seen in the past for
some other alloys too [10]. However, experimental data for
high wavevectors are not available for confirmation.

The overall results, therefore, show that the phonon
frequencies calculated by a combination of the TFC model
and the ICPA agree well with the experimental results for
both Pd-rich and Fe-rich alloys. To further validate the
approach, we present results for elastic constants in table 2.
A comparison with the experimental results and our earlier
calculations with empirical force constants is also done. The
results show an overall improvement of all the elastic constants
calculated in the present approach as compared to the approach
with empirical force constants for Pd0.96Fe0.04 and Pd0.9Fe0.1.
The calculated elastic constants for Pd0.28Fe0.72 have excellent
agreement with experimental results as well.

3.2. Pd0.5Fe0.5

The system Pd0.5Fe0.5 needs separate attention from the point
of view of comparison between experimental and theoretical
results. This is because of the fact that, unlike the other systems
considered so far, neutron-scattering measurements on this
system were done at a high temperature. It would, therefore, be
interesting to see how far the present TFC model can address
the complex interplay of interatomic forces between various
species pairs since the construction of the TFC model did
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Figure 6. Partial and total structure factors calculated by the ICPA for various ζ values in the [ζ, 0, 0] direction in Pd0.50Fe0.50 using the force
constants extracted at the disordered alloy bond length (5.12 au). The solid lines are the total contributions, the dotted lines are the Fe–Fe
contributions, the long-dashed lines are the Pd–Pd contributions and the dotted–dashed lines are the Fe–Pd contributions. All the curves are
for longitudinal modes.

not take care of temperature effects. As is done in the cases
for the alloys at other compositions we calculate the phonon
frequencies by the ICPA using the force constants extracted at
the disordered alloy bond length (5.12 au). To understand the
contributions of each pair of species towards the normal modes,
we look into the partial and the average structure factors. In
figure 6, we present results for the structure factors along
the [ζ, 0, 0] direction and for the longitudinal branch at some
selected ζ values. No anomalous behavior is observed for low
and medium wavevectors for which single distinct peaks in
the structure factors are observed. However, for [0.8, 0, 0]
an additional peak begins to appear which is clearly visible
at [1, 0, 0]. This, in turn, means that there would be the
existence of a split branch along the particular direction in the
frequency spectrum. The partial structure factors show that the
spurious high frequency peak is due to the Pd–Pd pairs and, to
a smaller extent, due to Fe–Pd pairs. As is mentioned already,
the splitting of the high frequency branch is a typical feature
of strong force constant disorder and has been reported for
some alloys. To understand its origin, we look at the force
constants from table 1. It is observed that the Fe–Fe and Fe–Pd
force constants differ significantly from Pd–Pd force constants,
thereby representing a situation of very strong disorder. We
can, therefore, conclude that the strong force constant disorder
causes the splitting of the high frequency branch. Since the
experimental results [36] do not show any such splitting, these
force constants do not represent the correct picture of the
microscopic interactions in Pd0.50Fe0.50.

In [36] neutron-scattering experiments were done on
ordered L10 FePd at room temperature and at a temperature
close to the order–disorder transition. The force constants in
the L10 structures at those temperatures were also extracted

by fitting the measured frequencies to a Born–Von Karman
model. In [17], one of us used the experimental force constants
for L10 structure at 860 K, a temperature close to the order–
disorder transition temperature 950 K, as the disordered alloy
force constants in the ICPA calculations and obtained excellent
agreement with experiments. It was, therefore, argued that
the force constants at 860 K correctly represent the ones of
the disordered alloy because of the fact that, near the order–
disorder transition temperature, the ordered and disordered
states are expected to be in perfect equilibrium, with the
disordered state possessing short-range order. To see whether
this was indeed the case, we next use the interatomic bond
distances of various pairs in the L10 structure at 860 K to
extract the fitted force constants. The results along with the
ones used in [17] are presented in table 1. It is observed that
the Fe–Fe and Pd–Pd bonds soften in comparison to the ones at
disordered alloy bond distances, with the Pd–Pd being mostly
affected. The Fe–Pd bonds harden because of the shortening
of the corresponding bond distances. However, all the bonds
are significantly softer than the ones in [17]. To see whether
the fitting to the L10 bond distances get rid of the spurious
peak in the structure factors of figure 6 and thus wash away
the split-peak behavior, we plot the structure factors for the
[1 0 0] longitudinal branch in figure 7. Unlike the previous
structure factors (figure 6), no dual-peak structures appear in
this case. The single high frequency peak is now mostly
because of the Fe–Pd contribution; the Fe–Fe and Pd–Pd
contributions only add more weights to the single peak. This
signifies that Pd–Pd contributions were overestimated whereas
the Fe–Pd contributions were grossly underestimated by the
calculations at the disordered bond length. The corresponding
dispersion curves are presented in figure 5. The results suggest
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Figure 7. Partial and total structure factors calculated by the ICPA
for ζ = 1 in the [ζ, 0, 0] direction in Pd0.50Fe0.50 with force constants
calculated at the L10 bond lengths. The solid lines are the total
contributions, the dotted lines are the Fe–Fe contributions, the
long-dashed lines are the Pd–Pd contributions and the dotted–dashed
lines are the Fe–Pd contributions. All the curves are for longitudinal
modes.

that the consideration of the L10 bond distances produce the
correct qualitative features as we do not see any peak splitting.
Thus, the results a posteriori validate the approximation with
reference to interatomic force constants in [17]. However,
the qualitative agreement with the experimental results is far
from satisfactory. The calculated frequencies are significantly
underestimated in this case. This is a reflection of overall
softening of the force constants as discussed above. The
reason for this underestimation could be because of the non-
incorporation of any temperature effect in the fitting model.
This incorporation, however, is a non-trivial task and is beyond
the scope of the present context.

4. Conclusions

A combination of the transferable force constant model
based upon first-principles calculations and the ICPA has
been proposed as a first-principles-based tool to calculate the
phonon spectrum and related properties for disordered alloys
at any arbitrary concentration. The TFC model, for the first
time, is applied to calculate the complete phonon spectra of
disordered alloys. The reliability of the model is also examined
in the context of magnetic type-II alloys. The phonon
dispersion curves and elastic constants for PdxFe1−x alloys
agree very well with the experiments at low temperatures.
For Pd0.5Fe0.5 alloys, the qualitative features of the various
inter-atomic force constants are also well reproduced with this
approach. The deviation of the calculated phonon frequencies
from the experimental results could be attributed to the non-
incorporation of any temperature effect in calculating the
force constants. The combination of the TFC and the ICPA,
thus, can be considered as an accurate first-principles-based
methodology for calculating lattice dynamics for disordered
alloys and can stand out as an answer to the long-standing
problem in this area of research.
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